Abstract:
In response to the remote sensing technology problems in mineral exploration in vegetation-covered areas, the authors proposed a new method of geological prospecting using remote sensing, taking advantage of the migration rules of metal elements and the spectral variation caused by metal stress on vegetation. The method is based on the principle of reflectance and absorption characteristics of leaf spectra of ferns, combined with geochemical data, to indirectly achieve remote sensing mapping of heavy metal element distribution. Silky fern samples and the corresponding spectral data were collected from the deposit area and the surrounding background area to determine molybdenum element content in silky fern leaves by chemical analysis. The silky fern leaves were confirmed to be affected by molybdenum elements, and the differences between silky fern leaves in the deposit area and those in the background area in terms of waveform, red edge position, chlorophyll and water absorption, and vegetation index were compared and analyzed. The results show that the fern leaves affected by molybdenum metal stress in the deposit area have obvious differences in spectral curves and absorption characteristics compared with those in the background area, especially at 970 nm water absorption feature. The research results could provide new ideas for the application of remote sensing technology in geological prospecting in vegetation-covered areas.