Abstract:
Qian’echong Mo-Pb-Zn deposit is located in the Mo polymetallic metallogenic belt of East Qinling-Dabie Mountain, and the orebodies mainly occurred in the external contact of the concealed granite. The metallogenic model was proposed through analysis of the mineralization geological process, geochemical characteristics of metallogenic rocks, ore-controlling factors and wall-rock lithology in Qian’echong Mo-Pb-Zn deposit, based on previous data and exploration results. It is concluded that the lattice structures in Dabie Mountain controls the distribution of orogenic belt, and has decisive effect on the distribution and formation of molybdenum ore deposits. The metallogenic geological body, with geochemical characteristics of high silicon, high-potassic, high alkali, is beneficial for the molybdenum mineralization. And the metallogenic geological body is depleted in Ba,Nb,Ta, Y, and Yb, and enriched in large ion lithophile element of Rb, Th and K. The low contents of Sr and Y reflect a high degree of magmatic differentiation. The surrounding rock physical property of porphyry molybdenum deposit shows a certain restriction on the location of molybdenum ore-formation zone. The metallogenic model of Qian'echong Mo-Pb-Zn deposit is the magma rocks remelting in the lower crust from Paleoproterozoic Dabie high-pressure granulite. The condensed magma was activated to the upward migration when it has been heated under Mesozoic tectonic regime transition of East China. Under different precipitation mechanisms of pressure and temperature reduction and pH change, the ore-forming fluid migrates in the fracture zone cracks and rock fractures, and precipitates into mineralization. The Pb-Zn mineralization is well deve-loped outside the molybdenum orebodies.