• 中国科技核心期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊

唐山市滨海地区地下热水水化学特征及循环深度

牛兆轩, 牛雪, 张成龙, 陈东方, 邓志辉

牛兆轩, 牛雪, 张成龙, 等. 唐山市滨海地区地下热水水化学特征及循环深度[J]. 中国地质调查, 2022, 9(6): 84-92. DOI: 10.19388/j.zgdzdc.2022.06.11
引用本文: 牛兆轩, 牛雪, 张成龙, 等. 唐山市滨海地区地下热水水化学特征及循环深度[J]. 中国地质调查, 2022, 9(6): 84-92. DOI: 10.19388/j.zgdzdc.2022.06.11
NIU Zhaoxuan, NIU Xue, ZHANG Chenglong, et al. Hydrochemical characteristics and circulation depth of geothermal water in coastal area of Tangshan City[J]. Geological Survey of China, 2022, 9(6): 84-92. DOI: 10.19388/j.zgdzdc.2022.06.11
Citation: NIU Zhaoxuan, NIU Xue, ZHANG Chenglong, et al. Hydrochemical characteristics and circulation depth of geothermal water in coastal area of Tangshan City[J]. Geological Survey of China, 2022, 9(6): 84-92. DOI: 10.19388/j.zgdzdc.2022.06.11

唐山市滨海地区地下热水水化学特征及循环深度

基金项目: 中国地质调查局青年科学基金项目“青海共和盆地贵德—达连海地区干热岩资源调查评价(编号: DD20211336)”和“结构面影响下干热岩水力裂缝扩展行为特征及能量释放机制研究(编号: 42102353)”联合资助
详细信息
    作者简介:

    牛兆轩(1992—),男,工程师,主要从事区域地下水化学演化及深部地热(干热岩)相关研究工作。Email:niuzhaoxuan@mail.cgs.gov.cn。

    通信作者:

    张成龙(1988—),男,工程师,主要从事深部地下空间碳封存与储气储能及非常规油气资源评价研究工作。Email:zhangchenglong@mail.cgs.gov.cn。

  • 中图分类号: P64

Hydrochemical characteristics and circulation depth of geothermal water in coastal area of Tangshan City

  • 摘要: 唐山市南部滨海地区地热资源丰富、种类齐全,但开发利用效率较低,通常以冬季海产品养殖等途径为主,项目单一、资源浪费严重。以唐山市南部滨海地区地热系统为研究对象,通过分析其地下热水的水化学特征,估算研究区的热储温度与循环深度。结果表明: ①唐山市滨海地区地下热水出露温度为26~86 ℃,属中低温地下热水,热水溶解性固体总量(total dissolved solids,TDS)为482~1 644 mg/L,pH值为8.25~9.15,为高矿化度弱碱性热水,水化学类型为HCO3-Na型; ②研究区热储温度可分为60~70 ℃和90~100 ℃两个区间,分别代表不同的地热水循环系统,计算得到循环深度为1 500~1 800 m和2 400 m~2 700 m。唐山市滨海地区地热田属于中低温传导型地热系统,形成以馆陶组为主要热储层,深部燕山期高温花岗岩(干热岩)提供持续热源的地热系统; ③研究区水热型地热系统具有持续稳定的高温热源,但其具有循环深度大、远离补给区等特点,水交替循环缓慢,当地应建立完善的地热能开采管理体系,在高效开采清洁地热资源的同时,避免地热尾水影响环境、资源枯竭、地面沉降等生态环境问题。研究加深了对唐山市南部滨海地区水热型地热系统的认识,为区域地热资源的开发利用提供了一定的科学依据。
    Abstract: The southern coastal area of Tangshan City has abundant and complete geothermal resources, but the development and utilization efficiency of geothermal resources is low. The conventional application of geothermal resources is winter seafood breeding, which is too single and has caused serious resource waste. The geothermal system in the southern coastal area of Tangshan City was set as the research goal, and the water samples were selected to analyze the hydrochemical characteristics of geothermal water and estimate the thermal storage temperature and circulation depth in the study area. The results show that ①The exposed temperature of geothermal water in Binhai area of Tangshan City is 26~86 ℃, belonging to the medium and low temperature. The total dissolved solid (TDS) of the geothermal water is between 482 and 1 644 mg/L, with pH of 8.25~9.15, belonging to the high-salinity and weak-alkaline thermal water, and the chemical type is HCO3-Na. ② The thermal storage temperature in the study area can be divided into two ranges, about 60~70 ℃ and about 90~100 ℃, respectively, representing two geothermal water circulation systems. The calculated circulation depths are about 1 500~1 800 m and 2 400~2 700 m. The geothermal field in the Binhai area of Tangshan City is geothermal system of medium-low temperature conduction, forming a geothermal system with the Guantao Formation as the main thermal reservoir. And the deep Yanshanian high-temperature granite (HDR) provides a continuous heat source. ③ The hydrothermal geothermal system in the study area has a continuous and stable high temperature heat source, however, it still has characteristics of large circulation depth, far away from the recharge area, making the water alternately circulates slowly. It is suggested that complete specification of geothermal exploration should be established to avoid effects of geothermal tail water on the environment, resource depletion and land subsidence during exploiting clean geothermal resources. This research would deepen the understanding of the thermal geothermal system in the southern coastal area of Tangshan City, and provide certain scientific basis for the development and utilization of regional geothermal resources.
  • [1] 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009: 1-5.
    Xu S G, Guo Y S.Fundamentals of Geothermal[M]. Beijing: Science Press, 2009: 1-5.
    [2] 窦斌, 田红, 郑君. 地热工程学[M]. 武汉: 中国地质大学出版社, 2020: 2.
    Dou B, Tian H, Zheng J.Geothermal Engineering[M]. Wuhan: China University of Geosciences Press, 2020: 2.
    [3] 汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 3-8.
    Wang J Y, Xiong L P, Pang Z H.Low-Medium Temperature Geothermal System of Convective Type[M]. Beijing: Science Press, 1993: 3-8.
    [4] 张承斌. 基于层次分析法-模糊综合评价模型的浅层地热能适宜性评价——以山东省昌乐县为例[J]. 中国地质调查, 2022, 9(2): 91-99.
    Zhang C B. Suitability evaluation of shallow geothermal energy based on analytic hierarchy process and fuzzy comprehensive evaluation: A case study of Changle County in Shandong Province[J]. Geol Surv China, 2022, 9(2): 91-99.
    [5] 樊新庆, 尚亚军, 张凇. 重庆市温塘峡背斜地热资源特征[J]. 中国地质调查, 2021, 8(5): 18-24.
    Fan X Q, Shang Y J, Zhang S.Characteristics of geothermal resources in Wentang Gorge anticline of Chongqing[J]. Geol Surv China, 2021, 8(5): 18-24.
    [6] 朱义坤, 赵景怀, 洪文二, 等. 隐伏对流型地热资源勘查方法研究——以花亭湖风景区为例[J]. 中国地质调查, 2022, 9(1): 16-22.
    Zhu Y K, Zhao J H, Hong W E, et al.Research on exploration methods of concealed convective geothermal resources: A case study of Huating Lake scenic spot[J]. Geol Surv China, 2022, 9(1): 16-22.
    [7] 卢兆群, 彭明章, 董妍, 等. 山东平阴地热水水文地球化学特征及成因分析[J]. 中国地质调查, 2022, 9(1): 104-114.
    Lu Z Q, Peng M Z, Dong Y, et al.Hydrogeochemical characteristics and genesis analysis of geothermal water in Pingyin of Shandong Province[J]. Geol Surv China, 2022, 9(1): 104-114.
    [8] 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
    Wang G L, Liu Y G, Zhu X, et al.The status and development trend of geothermal resources in China[J]. Earth Sci Front, 2020, 27(1): 1-9.
    [9] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018.
    China Geological Survey, Ministry of Natural Resources, Department of New and Renewable Energy of National Energy Administration, Institutes of Science and Development, Chinese Academy of Sciences, et al. China Geothermal Energy Development Report[M]. Beijing: China Petrochemical Press, 2018.
    [10] 杨立顺. 唐山沿海地区地热资源开发利用及前景[J]. 中国环境管理干部学院学报, 2011, 21(1): 23-25.
    Yang L S.The exploitation and prospect of geothermal resources in Tangshan coastland[J]. J EMCC, 2011, 21(1): 23-25.
    [11] 上官拴通. 马头营区干热岩地热资源赋存分布特征及开发利用前景[J]. 能源与环保, 2017, 39(5): 155-159, 165.
    Shangguan S T.Occurrence conditions of hot-dry-rock geothermal resources and development prospects in Matouying area[J]. China Energy Environ Prot, 2017, 39(5): 155-159, 165.
    [12] 董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3): 666-676.
    Dong Y X, Huang H X, Ren L, et al.Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China[J]. Pet Explor Dev, 2021, 48(3): 666-676.
    [13] 张汝惠, 解政文, 武冀新, 等. 唐山及其邻区热流值的分布[J]. 地震地质, 1982, 4(4): 57-67.
    Zhang R H, Xie Z W, Wu J X, et al.The distribution of heat flow values in Tangshan and its surroundings[J]. Seismol Geol, 1982, 4(4): 57-67.
    [14] 周颖. 唐山市浅层地热地质条件分析[J]. 建筑工程技术与设计, 2019(4): 3976.
    Zhou Y.Analysis of shallow geothermal geological conditions in Tangshan City[J]. Archit Eng Technol Des, 2019(4): 3976.
    [15] 于孝民, 杨春光, 董国明, 等. 唐山市第一眼蓟县系地热井钻探及成井技术[J]. 探矿工程(岩土钻掘工程), 2014, 41(2): 41-44.
    Yu X M, Yang C G, Dong G M, et al.Drilling and completion technology in the first geothermal well construction in Jixian system in Tangshan[J]. Explor Eng (Rock Soil Drill Tunneling), 2014, 41(2): 41-44.
    [16] 齐晓飞, 上官拴通, 张国斌, 等. 河北省乐亭县马头营区干热岩资源孔位选址及开发前景分析[J]. 地学前缘, 2020, 27(1): 94-102.
    Qi X F, Shangguan S T, Zhang G B, et al.Site selection and developmental prospect of a hot dry rock resource project in the Matouying Uplift, Hebei Province[J]. Earth Sci Front, 2020, 27(1): 94-102.
    [17] 李斌, 解瑞, 纪燕祥. 唐山市地热资源开发利用的可行性[J]. 工程技术, 2016, 3(28): 131.
    Li B, Xie R, Ji Y X.The feasibility of development and utilization of geothermal resources in Tangshan City[J]. Eng Technol, 2016, 3(28): 131.
    [18] 牛兆轩, 蒋小伟, 胡云壮. 滦河三角洲地区深层地下水化学演化规律及成因分析[J]. 水文地质工程地质, 2019, 46(1): 27-34.
    Niu Z X, Jiang X W, Hu Y Z.Characteristics and causes of hydrochemical evolution of deep groundwater in the Luanhe Delta[J]. Hydrogeol Eng Geol, 2019, 46(1): 27-34.
    [19] 钱会, 马致远, 李培月. 水文地球化学[M]. 北京: 地质出版社, 2012: 133-144.
    Qian H, Ma Z Y, Li P Y.Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2012: 133-144.
    [20] 牛兆轩. 滦河三角洲地区地下水循环及演化规律研究[D]. 北京: 中国地质大学(北京), 2019.
    Niu Z X. Study on Groundwater Circulation and Evolution Law in Weihe River Delta Area[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [21] 秦大军, 孙杰, 郭艺, 等. 永定河对北京西山岩溶水和玉泉山泉的影响[J]. 工程地质学报, 2019, 27(1): 162-169.
    Qin D J, Sun J, Guo Y, et al. Impacts of Yongding River on the Xishan karst aquifer and Yuquan spring in Beijing, China[J]. J Eng Geol, 2019, 27(1): 162-169.
    [22] Giggenbach W F.Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochim Cosmochim Acta, 1988, 52(12): 2749-2765.
    [23] Henley R W.Geothermal fluids: chemistry and exploration techniques: K. Nicholson. Springer Verlag, Berlin, New York, 1993, 263 pp., DM 138.00[J]. J Geochem Explor, 1995, 52(3): 382-383.
    [24] 单玄龙, 蔡壮, 郝国丽, 等. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报: 地球科学版, 2019, 49(3): 662-672.
    Shan X L, Cai Z, Hao G L, et al.Estimation of thermal storage temperature of geothermal system in Changbai mountain by Geothermometers[J]. J Jilin Univ (Earth Sci Ed), 2019, 49(3): 662-672.
    [25] Fournier R O.Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1-4): 41-50.
    [26] Giggenbach W F.Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochim Cosmochim Acta, 1988, 52(12): 2749-2765.
    [27] D’Amore F, Fancelli R, Caboi R. Observations on the application of chemical geothermometers to some hydrothermal systems in Sardinia[J]. Geothermics, 1987, 16(3): 271-282.
    [28] Kharaka Y K, Lico M S, Law L M.Chemical geothermometers applied to formation waters, gulf of Mexico and California Basins: Abstract[J]. AAPG Bull, 1982, 66(5): 588-589.
    [29] Fournier R O, Potter II R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochim Cosmochim Acta, 1979, 43(9): 1543-1550.
    [30] 戴蔓. 青海贵德地区地热水水文地球化学特征及形成演化规律[D]. 北京: 中国地质大学(北京), 2020.
    Dai M. The Hydrogeochemical Characteristics and the Evolution of Geothermal Water in Guide Area, Qinghai[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [31] 陈墨香, 黄歌山, 汪缉安, 等. 渤海地温场特点的初步研究[J]. 地质科学, 1984, 19(4): 392-401.
    Chen M X, Huang G S, Wang J A.A preliminary research on the geothermal characteristics in the Bohai Sea[J]. Chin J Geol, 1984, 19(4): 392-401.
    [32] 张汝惠, 武冀新, 张晚霞. 辽宁南部的大地热流及岩石圈热结构[J]. 中国地震, 1991, 7(3): 11-24.
    Zhang R H, Wu J X, Zhang W X.Terrestrial heat flow and thermal structure of the lithosphere in South Liaoning[J]. Earthq Res China, 1991, 7(3): 11-24.
  • 期刊类型引用(2)

    1. 张云,张哲妮,高亮,杨风良,刘现川. 兰州地热井K1井施工工艺. 中国井矿盐. 2024(05): 21-22+25 . 百度学术
    2. 杜淑艳,孙鑫,秦仓林,杜焕福,王春伟,刘桂华. 干热岩地热储层综合评价技术的建立与应用. 中国地质调查. 2023(05): 17-26 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  74
  • HTML全文浏览量:  0
  • PDF下载量:  213
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-10-26
  • 刊出日期:  2022-12-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭