Abstract:
Laser Raman spectroscopy is a qualitative analysis method, with the characteristics of high precision, convenience and non-destructive. And it has made progress in the field of geology and mineral resources with the continuous improvement of technology in recent years, which was mainly reflected in fluid inclusion analysis, sedimentary organic matter research and mineral component identification. In fluid inclusion analysis, the traditional qualitative analysis, such as gaussian - lorentz to volume integral peak, the parameters of the frequency shift method and CO
2 Raman spectra method were set as basis, and the good linear relationships between Raman characteristic parameters of peak area and half peak and concentration, pressure, isotope were used together to analyze the pressure, salinity and isotopic. The metamorphic grade, maturity and thermal evolution degree of rock organic matter can be directly analyzed by the carbonaceous Raman thermometers in the study of sedimentary organic matter. The point-to-point and point-to-surface methods can be used conveniently and quickly to identify similar minerals and micro-minerals during identification of similar and microscopical mineral components. The latest development of laser Raman spectrum in the above aspects are reviewed and the existing achievements and the problems in the application are summarized in combination with related literature in this paper. The authors conclude that the lack of the traditional methods were offset by these new methods, and the influence of fluorescence interference and different experimental conditions on experimental convenience, reproducibility and accuracy should also be paid attention. Besides, the future development is put forward, and it is suggested that the combination of Laser Raman spectroscopy and other instruments should be used in conjunction to improve the testing efficiency, which could further expand the application scope of Raman spectroscopy in the utilization and comprehensive research of mineral resources, and provide a more efficient technical means for geological work.