• 中国科技核心期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊

重要生态功能区土壤化学元素的空间分布模式——以大兴安岭松岭区为例

于俊博, 周传芳, 梁中恺, 孙彦峰, 姜平, 胡宸

于俊博, 周传芳, 梁中恺, 等. 重要生态功能区土壤化学元素的空间分布模式——以大兴安岭松岭区为例[J]. 中国地质调查, 2021, 8(6): 105-113. DOI: 10.19388/j.zgdzdc.2021.06.10
引用本文: 于俊博, 周传芳, 梁中恺, 等. 重要生态功能区土壤化学元素的空间分布模式——以大兴安岭松岭区为例[J]. 中国地质调查, 2021, 8(6): 105-113. DOI: 10.19388/j.zgdzdc.2021.06.10
YU Junbo, ZHOU Chuanfang, LIANG Zhongkai, et al. Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains[J]. Geological Survey of China, 2021, 8(6): 105-113. DOI: 10.19388/j.zgdzdc.2021.06.10
Citation: YU Junbo, ZHOU Chuanfang, LIANG Zhongkai, et al. Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains[J]. Geological Survey of China, 2021, 8(6): 105-113. DOI: 10.19388/j.zgdzdc.2021.06.10

重要生态功能区土壤化学元素的空间分布模式——以大兴安岭松岭区为例

基金项目: 中国地质调查局“生态地质调查工程(编号: 0703)”“大兴安岭山区生态地质调查(编号: DD20191014)”项目联合资助
详细信息
    作者简介:

    于俊博(1989—),男,助理工程师,主要从事勘查地球化学方面的研究。Email: 409999177@qq.com。

    通信作者:

    周传芳(1985—),男,工程师,主要从事区域地质矿产调查、生态地质调查及多金属勘查工作和研究。Email: 546011015@qq.com。

  • 中图分类号: P595;X171.4;S153.6

Spatial distribution patterns of soil chemical elements in important ecological function areas: A case study in Songling area of the Greater Khingan Mountains

  • 摘要: 大兴安岭森林带是我国“两屏三带”生态安全战略格局中的重要一环,其北段松岭区目前是生态地质调查的空白区,查明区内土壤中的元素含量以及空间分布模式,可以为该区生态保护与修复提供基础支撑。以松岭区表层土壤和深层土壤为研究对象,利用多目标区域地球化学采样及分析方法,探讨了各元素指标的地球化学特征及分布模式。研究区土壤的元素分布模式有以下特征: 全C、N、P、S在表层土壤中显著富集; K2O、CaO、Na2O、SiO2在表层土壤中明显贫化; F、Cl、Br、I在表层土壤中高值区的分布受深层土壤影响,同时Br和I在表层土壤中的富集与有机质关系密切; 内梅罗综合指数显示As、Cd、Hg、Ni、Pb、Zn等重金属元素在土壤中轻微超标。
    Abstract: The Greater Khingan Mountains forest belt is an important area in the ecological security pattern of Two Barriers and Three Belts in China. Songling area in the northern part of the Greater Khingan Mountains is currently a blank area for ecogeological survey. Exploring the content and spatial distribution pattern of soil elements can provide basic support for ecological protection and restoration in the study area. In this paper, based on the multi-purpose regional geochemical survey and analysis method, the authors discussed the geochemical characteristics and distribution patterns of each element index in surface and deep soils of Songling area. From the perspective of the elements distribution patterns, the content of total C, N, P and S in the surface soil was significantly higher, while the content of K2O, CaO, Na2O and SiO2 in the surface soil was significantly lower. The distribution positions of F, Cl, Br and I in the high value areas of the surface soil were mainly affected by the deep soil, and the enrichment of Br and I in surface soil was closely related to organic matter. As, Cd, Hg, Ni, Pb, Zn and other heavy metal elements in the soil slightly exceeded the standard according to the Nemerow comprehensive index.
  • [1] Abakumov E V,Tomashunas V M,Lodygin E D,et al.Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic[J].Eurasian Soil Sci,2015,48(12):1300-1305.
    [2] Moskovchenko D V,Kurchatova A N,Fefilov N N,et al.Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea,Russia):Patterns of variation across landscapes[J].Environ Monit Assess,2017,189(5):210.
    [3] Dauvalter V.Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic Lake Kuetsjärvi,Murmansk region,Russia[J].J Environ Monit,2003,5(2):210-215.
    [4] Boyd R,Barnes S J,De Caritat P,et al.Emissions from the copper-nickel industry on the Kola Peninsula and at Noril’sk,Rus-sia[J].Atmos Environ,2009,43(7):1474-1480.
    [5] Zhulidov A V,Robarts R D,Pavlov D F,et al.Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) North of the Norilsk Industrial Complex[J].Environ Monit Assess,2011,181(1/4):539-553.
    [6] Antcibor I,Eschenbach A,Zubrzycki S,et al.Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland,northern Siberia,Russia[J].Biogeoscien-ces,2014,11(1):1-15.
    [7] Desyatkin R V,Desyatkin A R.Thermokarst transformation of soil cover on cryolithozone flat territories[M]//Hatano R,Guggenberger G.Symptom of Environmental Change in Siberian Permafrost Region.Sapporo:Hokkaido University Press,2006:213-223.
    [8] 刘超,王宪伟,宋艳宇,等.增温对冻土区泥炭沼泽土壤孔隙水甲烷关联微生物和溶解性有机碳的影响[J].生态学报,2021,41(1):184-193.
    Liu C,Wang X W,Song Y Y,et al.Effects of warming on abundances of methane-related microorganisms and concentration of dissolved organic carbon in soil pore water of permafrost peat swamp in Daxing’anling[J].Acta Ecol Sin,2021,41(1):184-193.
    [9] 余炎炎,李梦莎,刘啸林,等.大兴安岭典型永久冻土土壤细菌群落组成和多样性[J].微生物学通报,2020,47(9):2759-2770.
    Yu Y Y,Li M S,Liu X L,et al.Soil bacterial community composition and diversity of typical permafrost in Greater Khingan Mountains[J].Microbiol China,2020,47(9):2759-2770.
    [10] 李泽宇,张志,邱天艺,等.来源于大兴安岭多年冻土可培养真菌及其发酵物的生物活性[J].天然产物研究与开发,2020,32(3):453-463.
    Li Z Y,Zhang Z,Qiu T Y,et al.Culturable fungi from permafrost of Greater Khingan Mountains and biological activities of their fermented products[J].Nat Prod Res Dev,2020,32(3):453-463.
    [11] 马大龙,刘梦洋,陈泓硕,等.积雪覆盖变化对大兴安岭多年冻土区土壤微生物群落结构的影响[J].生态学报,2020,40(3):789-799.
    Ma D L,Liu M Y,Chen H S,et al.Effects of snow cover change on soil microbial community structure in permafrost region of Great Hing’an Mountains[J].Acta Ecol Sin,2020,40(3):789-799.
    [12] 吴祥文,臧淑英,马大龙,等.大兴安岭多年冻土区森林土壤温室气体通量[J].地理学报,2020,75(11):2319-2331.
    Wu X W,Zang S Y,Ma D L,et al.Greenhouse gas fluxes from forest soil in permafrost regions of Greater Hinggan Mountains,Northeast China[J].Acta Geogr Sin,2020,75(11):2319-2331.
    [13] 常怡慧,牟长城,彭文宏,等.大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征[J].生态学报,2020,40(7):2333-2346.
    Chang Y H,Mu C C,Peng W H,et al.Characteristics of greenhouse gas emissions from seven swamp types in the permafrost region of Daxing’an Mountains,northeast China[J].Acta Ecol Sin,2020,40(7):2333-2346.
    [14] 张轩文,杨丽,刘晓宏,等.大兴安岭北部多年冻土区落叶松和樟子松生长的气候响应差异研究[J].冰川冻土,2017,39(1):165-174.
    Zhang X W,Yang L,Liu X H,et al.Study of the difference in climate response of Dahurian Larch and Pinus sylvestris growth in the north Great Higgnan Mountains of permafrost regions,Northeast China[J].J Glaciol Geocryol,2017,39(1):165-174.
    [15] 孙菊,李秀珍,王宪伟,等.大兴安岭冻土湿地植物的生态特征及分布区型[J].生态学杂志,2010,29(6):1061-1067.
    Sun J,Li X Z,Wang X W,et al.Ecological characteristics and areal types of permafrost wetland plants in Great Hing’an Mountains[J].Chin J Ecol,2010,29(6):1061-1067.
    [16] 聂洪峰,肖春蕾,刘建宇,等.生态地质调查工程与主要成果[J].中国质调查,2021,8(1):1-12.
    Nie H F,Xiao C L,Liu J Y,et al.Progresses and main achievements of ecogeological survey project[J].Geology Survey of China,2021,8(1):1-12.
    [17] 黑龙江省地质矿产局.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997:13-74.
    Bureau of Geology and Mineral Resources of Heilongjiang Pro-vince.Stratigraphy (Lithostratic) of Heilongjiang Province[M].Wuhan:China University of Geosciences Press,1997:13-74.
    [18] 李天杰,郑应顺,王云.土壤地理学[M].2版.北京:高等教育出版社,1984:42-55.
    Li T J,Zheng Y S,Wang Y.Pedogeography[M].2nd ed.Beijing:Higher Education Press,1984:42-55.
    [19] 姜海燕. 大兴安岭森林生态系统水文特性的研究[D].哈尔滨:东北林业大学,2008.
    Jiang H Y.Study on Hydrological Characteristics of Forest Ecosystem in Daxing’anling[D].Harbin:Northeast Forestry University,2008.
    [20] 中华人民共和国国土资源部.多目标区域地球化学调查规范(1∶250 000):DZ/T 0258—2014[S].北京:中国标准出版社,2014.
    Ministry of Land and Resources of the People’s Republic of China.Specification of multi-purpose regional geochemical survey (1∶250 000):DZ/T 0258-2014[S].Beijing: Standards Press of China,2014.
    [21] 侯青叶,杨忠芳,余涛,等.中国土壤地球化学参数[M].北京:地质出版社,2020:2180-2183.
    Hou Q Y,Yang Z F,Yu T,et al.Soil Geochemical Dataset of China[M].Beijing:Geological Publishing House,2020:2180-2183.
    [22] 史长义,梁萌,冯斌.中国水系沉积物39种元素系列背景值[J].地球科学,2016,41(2):234-251.
    Shi C Y,Liang M,Feng B.Average background values of 39 chemical elements in stream sediments of China[J].Earth Sci,2016,41(2):234-251.
    [23] 史长义. 勘查数据分析(EDA)技术的应用[J].地质与勘探,1993,29(11):52-58.
    Shi C Y.Application of the exploratory data analysis techni-que[J].Geol Explor,1993,29(11):52-58.
    [24] Reimann C,Filzmoser P,Garrett R G.Background and threshold:Critical comparison of methods of determination[J].Sci Total Environ,2005,346(1-3):1-16.
    [25] Reimann C,Garrett R G.Geochemical background-concept and reality[J].Sci Total Environ,2005,350(1/2/3):12-27.
    [26] 廖启林,金洋,吴新民,等.南京地区土壤元素的人为活动环境富集系数研究[J].中国地质,2005,32(1):141-147.
    Liao Q L,Jin Y,Wu X M,et al.Artificial environmental concentration coefficients of elements in soils in the Nanjing area[J].Geol China,2005,32(1):141-147.
    [27] 雷传扬,李威,尹显科,等.祁连山地区关键带过程与生态自然修复的关系研究[J].矿物岩石地球化学通报,2020,39(4):741-753.
    Lei C Y,Li W,Yin X K,et al.Study on the relationship between process of critical zone and natural ecological restoration in the Qilian Mountains[J].Bull Mineral,Petrol Geochem,2020,39(4):741-753.
    [28] 朱永官,李刚,张甘霖,等.土壤安全:从地球关键带到生态系统服务[J].地理学报,2015,70(12):1859-1869.
    Zhu Y G,Li G,Zhang G L,et al.Soil security:From earth’s critical zone to ecosystem services[J].Acta Geogr Sin,2015,70(12):1859-1869.
    [29] 安培浚,张志强,王立伟.地球关键带的研究进展[J].地球科学进展,2016,31(12):1228-1234.
    An P J,Zhang Z Q,Wang L W.Review of Earth critical zone research[J].Adv Earth Sci,2016,31(12):1228-1234.
    [30] 尼尔·布雷迪,雷·韦尔.土壤学与生活[M].李保国,徐建明,译.14版.北京:科学出版社,2019:38-60.
    Brady N C,Weil R R.The Nature and Properties of Soils[M].Li B G,Xu J M,trans.14th ed.Beijing:Science Press,2019:38-60.
    [31] 成杭新,彭敏,赵传冬,等.表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J].地学前缘,2019,26(6):159-191.
    Cheng H X,Peng M,Zhao C D,et al.Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil,Southwest China[J].Earth Sci Front,2019,26(6):159-191.
    [32] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:24-40.
    Liu Y J,Cao L M,Li Z L,et al.Geochemistry of Elements[M].Beijing:Science Press,1984:24-40.
    [33] 李勇. 重金属的生态地球化学与人群健康研究[M].广州:中山大学出版社,2014.
    Li Y.Study on the Ecological Geochemistry of Heavy Metals and Health of People[M].Guangzhou:Sun Yat-Sen University Press,2014.
    [34] 刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学,2012,33(1):260-265.
    Liu C Z,Huang Y Z,Lei M,et al.Soil contamination and assessment of heavy metals of Xiangjiang River basin[J].Environ Sci,2012,33(1):260-265.
    [35] 陆书玉. 环境影响评价[M].北京:高等教育出版社,2001:163-164.
    Lu S Y.Environmental Impact Assessment[M].Beijing:Higher Education Press,2001:163-164.
    [36] 戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策[J].地质地球化学,2002,30(4):75-79.
    Dai Q J,Feng X B,Tang G P.The geochemical behavior of mercury in soil and its pollution control[J].Geol-Geochem,2002,30(4):75-79.
  • 期刊类型引用(4)

    1. 王再山,李强,高艺,韩美凤,陈欢,金志民,刘铸. 中国黑龙江省3处森林内鼩鼱骨组织中的镉、汞、铅生物积累. 生态毒理学报. 2025(01): 409-418 . 百度学术
    2. 左健扬,方璐,刘晓慧. 宁夏固原地区土壤地球化学背景值分析. 中国地质调查. 2023(01): 76-82 . 本站查看
    3. 王献,鲁敏,侯红星,孙肖,王浩浩,乔衍溢,刘勇. 山区平原过渡区土质地表基质空间异质性特征分析——以河北省易县东部地区为例. 中国地质调查. 2023(03): 60-66 . 本站查看
    4. 欧阳渊,刘洪,张景华,唐发伟,张腾蛟,黄勇,黄瀚霄,李富,陈敏华,宋雯洁. 西南山区生态地质调查技术方法研究. 西北地质. 2023(04): 218-242 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  117
  • HTML全文浏览量:  0
  • PDF下载量:  167
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-08-28
  • 修回日期:  2021-11-22
  • 刊出日期:  2021-12-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭