Fractal theory of suitability zoning structure of shallow geothermal energy
-
摘要: 可再生的新型环保能源浅层地热能开发利用前景广阔。由于区域地质条件复杂,借用分形原理可将原来研究中所采用的还原论方法即线性问题处理方法转换为更符合地质条件本质特征的非线性处理方法。探讨了浅层地热能赋存条件适宜性分区结构的分形维数及标度与分形维数的关系; 简析了面状地形地貌信息几何属性对分维值的影响。研究结果表明,浅层地热能适宜性分区结构存在明显的分形特征,其分形维数较好地反映了适宜性分区轮廓的曲折程度,分形数越大,则轮廓线越不规则。旨在为浅层地热能调查评价工作提供全新的非线性化的处理方法,对分形理论的实际应用和浅层地热能的开发工作都有较强的理论和实际意义。Abstract: Shallow geothermal energy, as a new environmentally friendly energy that can be regenerated, has broad prospects in the development and utilization. The reductionism method which has been used in studying linear problems, can be converted into the nonlinear processing method which is more in line with the geological conditions of nature by using the fractal theory because of the complicated regional geological conditions. This article discusses the fractal dimension of suitability zoning structure of shallow geothermal energy occurrence conditions and the relationship between the fractal dimension and size. Besides, the impact of the geometric properties of the planar landform on the fractal dimension values is also discussed. This research shows that shallow geothermal energy suitability zoning structure have obvious fractal characters, and its fractal dimension reflects the tortuous degree of suitability zoning outline. And the fractal number and the irregular degree of contour line established a positive relation. This article provides a new method to deal with the nonlinear problem for shallow geothermal energy investigation and evaluation, and has a strong theoretical and practical significance in application of fractal theory and shallow geothermal energy development.
-
Keywords:
- shallow geothermal energy /
- suitability /
- fractal principle
-
-
[1] 陶庆法,胡杰.浅层地热能开发利用现状、发展趋势与对策[C]//国土资源部地质环境司.全国地热(浅层地热能)开发利用现场经验交流会论文集.北京:中国能源研究会地热专业委员会,2006,7:12-18. [2] 郑克棪.浅层地热能开发利用的世界现状及在我国的发展前景[C]//国土资源部地质环境司.全国地热(浅层地热能)开发利用现场经验交流会论文集.北京:中国能源研究会地热专业委员会,2006,4:25-28. [3] 冯超臣,黄文峰.山东省菏泽市聊城—兰考断裂带西部地区地热资源评价[J].中国地质调查,2015,2(8):55-59. [4] 张宗元,孙晓涛,王飞,等.临沂城区浅层地热能利用方式适宜性分区研究[J].山东国土资源,2015,31(8):42-44. [5] 张甫仁,朱方圆,彭清元,等.重庆主城区浅层地温能适宜性分区评价[J].重庆交通大学学报(自然科学版),2013,32(4):647-651. [6] 尼科里斯 G,普利高津 I.探索复杂性[M].罗久里,陈奎宁,译.2版.成都:四川教育出版社,1992. [7] 谢和平,陈至达.分形(fractal)几何与岩石断裂[J].力学学报,1988,20(3):264-271,290. [8] 董连科,王晓伟,王克钢,等.分形用于材料断裂韧性研究的不定性问题[J].高压物理学报,1990,4(2):118-122. [9] 龙期威.分形图形周界和面积的关系[J].高压物理学报,1990,4(4):259-262. [10] 谢和平,陈至达.岩石类材料裂纹分叉非规则性几何的分形效应[J].力学学报,1989,21(5):613-618. [11] 孙博玲.分形维数(Fractal dimension)及其测量方法[J].东北林业大学学报,2004,32(3):116-119. -
期刊类型引用(3)
1. 郭香敏,丁枫,凡韬,孙瑶,黄仕宗,蔺吉庆,霍艳. 东昆仑东段原特提斯洋的俯冲时限:来自瓦勒尕花岗质岩石锆石U-Pb年代学及地球化学的约束. 成都理工大学学报(自然科学版). 2024(02): 222-246 . 百度学术
2. 陈欣,王辉,毛景文,于淼,乔建峰,王治安. 东昆仑夏日哈木矿区热液型铅锌矿体成因及地质意义. 地学前缘. 2023(02): 347-369 . 百度学术
3. 郝梦楠,熊富浩,赵涵,龚婷婷. 东昆仑丘吉东沟地区泥盆纪花岗岩的成因机制及其对原特提斯造山作用的启示. 矿物岩石. 2021(02): 59-70 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 401
- HTML全文浏览量: 0
- PDF下载量: 359
- 被引次数: 6